• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Medical Tubing and Extrusion

Medical tubing and extrusion technologies

  • Technologies
    • Balloons
    • Brain-computer interfaces
    • Cardiac Implants
    • Catheters
    • Endoscopes
    • Heart valves
    • Pulsed Field Ablation
  • Components
    • Connectors
    • Needles and Injections
    • Seals
    • Tubing Components
  • Manufacturing
    • Coatings
    • Extrusions
    • Machining
    • Molding
      • Injection Molding
      • Insert molding
      • Mold Components
    • Tools
  • Materials
    • Advanced Materials
    • Metals
    • Nitinol
    • Plastics
    • Silicone
  • Business
    • Distribution Agreements
    • Legal News
    • Mergers & Acquisitions
    • Partnerships
    • Personnel Moves
  • Regulatory
    • 510(k)
    • CE Mark
    • FDA Breakthrough Designation
    • ISO Certification
    • Pre-Market Approval (PMA)
    • Recalls
  • Suppliers
  • About Us

U.S. Army Research Office backs NYU engineering team’s investigation of hydrogels that could heal wounds or stick like Spiderman

August 19, 2015 By MDO Editor

Adhesive
After testing the protein hydrogels, which are made from the Escherichia coli bacterium, they will be patterned onto various solid substrates to mimic biological functions. An example of this would be the patterning on a gecko’s finger that allows it to adhere to surfaces. Photo credit: www.eurekalert.org

The U.S. Army Research Laboratory’s Army Research Office (ARO) recently awarded a New York University Polytechnic School of Engineering researcher a grant to advance protein-engineered, environmentally responsive hydrogels that could replicate biochemical processes currently found only in nature. These protein hydrogels could become fundamental building blocks of important new biomimetic materials.

Associate Professor Jin Kim Montclare of the Department of Chemical and Biomolecular Engineering received $368,000 over three years to fabricate patterned protein hydrogels for applications in sensing, drug delivery and wound healing. As an example, these biomimetic materials could mimic the adhesion properties of the human body well enough to heal wounds. Montclare also envisions biomimetic materials that will be able to sense and control the flow of fluids, or even control the delivery of drugs within the bloodstream.

After testing the protein hydrogels, which are made from the Escherichia coli bacterium, they will be patterned onto various solid substrates to mimic biological functions. An example of this would be the patterning on a gecko’s finger that allows it to adhere to surfaces. A similarly designed protein hydrogel could yield a similar stickiness. Using different patterning, protein hydrogels can adopt various other capabilities seen in nature.

Montclare’s research differs from previous scientists’ work in that it uses biologically engineered proteins instead of synthetic polymers or materials. The advantage, she explains, is that the new materials can be controlled by external stimuli such as temperature or salt.

With soldier protection and performance a priority, the U.S. Department of Defense has invested heavily in synthetic biology which is the ability to make things using biology. Since 2005, Montclare and her research group have been at the forefront of protein engineering and molecular design.

The NYU Polytechnic School of Engineering dates to 1854, when the NYU School of Civil Engineering and Architecture as well as the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly) were founded. Their successor institutions merged in January 2014 to create a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention, innovation and entrepreneurship. In addition to programs at its main campus in downtown Brooklyn, it is closely connected to engineering programs in NYU Abu Dhabi and NYU Shanghai, and it operates business incubators in downtown Manhattan and Brooklyn.

New York University
www.engineering.nyu.edu

Army Research Office
www.arl.army.mil

Filed Under: Adhesives, Advanced Materials, Materials, Prototyping, Research & Development, Seals Tagged With: army, aro, nyupolytechnicschoolofengineering, u.s.armyresearchlaboratory'sarmyresearchoffice

Primary Sidebar

“mte
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest trends and developments in medical tubing and extrusion.
MDO ad

Sponsored Content

A new way to access scientific papers?

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Footer

Inv Logo

MASSDEVICE MEDICAL NETWORK

MassDevice
DeviceTalks
Medical Design & Outsourcing
MedTech 100 Index
Drug Discovery & Development
Pharmaceutical Processing World
Medical Design Sourcing
R&D World
Drug Delivery Business News

Medical Tubing + Extrusion

Subscribe to our E-Newsletter
Advertise with us
About
Attend our Monthly Webinars
Listen to our Weekly Podcasts
Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS